您当前的位置: 首页 > 备考指导 > 高中辅导 > 高中数学 > 高考数学答题:你需要具备的一些小方法

高考数学答题:你需要具备的一些小方法

    在高考数学做题时,有一些必须具备的方法和技巧是需要大家记住的,这能帮考生们大大的节省时间,具体的内容看看下面总结的这些吧,希望对你有一定的帮助。

  1.函数或方程或不等式的题目,先直接思考后建立三者的联系.首先考虑定义域,其次使用“三合一定理”;

  2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;

  3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质;

  4.选择与填空中出现不等式的题目,优选特殊值法;

  5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

  6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

  7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;

  8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);

  9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;

  10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

  11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;

  12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;

  13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

  14.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;

  15.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;

初高中提分热线:192-6656-3658

欢迎咨询孩子的学习问题

初高中辅导,中高考冲刺辅导,线上辅导+线下辅导

一对一辅导、作业辅导、小班课、艺考文化课

咨询热线

192-6656-3658

扫描智能学微信二维码

微信公众号

免费咨询孩子的学习问题,预约本地资深老师辅导

联系老师