您当前的位置: 首页 > 备考指导 > 高中辅导 > 高中辅导班 > 高中数学立体几何学习的四点建议

高中数学立体几何学习的四点建议

    立体几何的证明是数学学科中很重要的一个知识点。因此,历年高考中都有立体几何论证题的考查。但是,大多数学生在证明立体几何的时候不知道该如何下手,从哪论证,归根究底还是因为最基本的理论没有活学活用。小编给大家整理了几条有关理解题几何学习的建议,希望可以对大家有所启发。

 

  一、立足课本,夯实基础

 

  直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。

 

  二、转化思想的应用

 

  解立体几何的问题,主要是充分运用转化这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:

 

  1. 两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。

 

  2. 异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。

 

  3. 面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。

 

  三、培养空间想象力

 

  为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。

 

  四、总结规律,规范训练

 

  立体几何解题过程中,常有明显的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。不断总结,才能不断高。还要注重规范训练,高考中反映的这方面的问题十分严重,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求我们在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。

 

初高中提分热线:192-6656-3658

欢迎咨询孩子的学习问题

初高中辅导,中高考冲刺辅导,线上辅导+线下辅导

一对一辅导、作业辅导、小班课、艺考文化课

咨询热线

192-6656-3658

扫描智能学微信二维码

微信公众号

免费咨询孩子的学习问题,预约本地资深老师辅导

联系老师